Digital Design Theory (Princeton Architectural Press, 2016) is available on Amazon.

Futurist experts have estimated that by the year 2030 computers in the price range of inexpensive laptops will have a computational power that is equivalent to human intelligence. The implications of this change will be dramatic and revolutionary, presenting significant opportunities and challenges to designers. Already machines can process spoken language, recognize human faces, detect our emotions, and target us with highly personalized media content. While technology has tremendous potential to empower humans, soon it will also be used to make them thoroughly obsolete in the workplace, whether by replacing, displacing, or surveilling them. More than ever designers need to look beyond human intelligence and consider the effects of their practice on the world and on what it means to be human.

The question of how to design a secure human future is complicated by the uncertainties of predicting that future. As it is practiced today, design is strategically positioned to improve the usefulness and quality of human interactions with technology. Like all human endeavors, however, the practice of design risks marginalization if it is unable to evolve. When envisioning the future of design, our social and psychological frames of reference unavoidably and unconsciously bias our interpretation of the world. People systematically underestimate exponential trends such as Moore’s law, for example, which tells us that in 10 years we will have 32 times more total computing power than today. Indeed, as computer scientist Ray Kurzweil observes, “We won’t experience 100 years of technological advances in the 21st century; we will witness on the order of 20,000 years of progress (again when measured by today’s rate of progress), or about 1,000 times greater than what was achieved in the 20th century.”

Design-oriented research provides a possible means to anticipate and guide rapid changes, as design, predicated as it is on envisioning alternatives through “collective imagining,” is inherently more future-oriented than other fields. It therefore seems reasonable to ask how technology-design efforts might focus more effectively on enabling human-oriented systems that extend beyond design for humanity. In other words, is it possible to design intelligent systems that safely design themselves?

Imagine a future scenario in which extremely powerful computerized minds are simulated and shared across autonomous virtual or robotic bodies. Given the malleable nature of such super-intelligences—they won’t be limited by the hardwiring of DNA information—one can reasonably assume that they will be free of the limitations of a single material body, or the experience of a single lifetime, allowing them to tinker with their own genetic code, integrate survival knowledge directly from the learnings of others, and develop a radical new form of digital evolution that modifies itself through nearly instantaneous exponential cycles of imitation and learning, and passes on its adaptations to successive generations of “self.”

In such a post-human future, the simulation of alternative histories and futures could be used as a strategic evolutionary tool, allowing imaginary scenarios to be inhabited and played out before individuals or populations commit to actual change. Not only would the lineage of such beings be perpetually enhanced by automation, leading to radical new forms of social relationships and values, but the systems that realize or govern those values would likely become the instinctual mechanism of a synchronized and sentient “techno-cultural mind.”

Bringing such speculative and hypothetical scenarios into cultural awareness is one way that designers can evaluate possibilities and determine how best to proceed. What should designers do to prepare for such futures? What methods should be applied to their research and training?

Today’s interaction designers shape human behavior through investigative research, systemic thinking, creative prototyping, and rapid iteration. Can these same methods be used to address the multitude of longer-term social and ethical issues that designers create? Do previous inventions, such as the internal combustion engine or nuclear power, provide relevant historical lessons to learn from? If little else, reflecting on super-intelligence through the lens of nuclear proliferation and global warming throws light on the existential consequences of poor design. It becomes clear that while systemic thinking and holistic research are useful methods for addressing existential risks, creative prototyping or rapid iteration with nuclear power or the environment as materials is probably unwise. Existential risks do not allow for a second chance to get it right. The only possible course of action when confronted with such challenges is to examine all possible future scenarios and use the best available subjective estimates of objective risk factors.

Simulations can also be leveraged to heighten designers’ awareness of trade-offs. Consider the consequences of contemporary interaction design, for example: intuitive interfaces, systemic experiences, and service economies. When current design methods are applied to designing future systems, each of these patterns can be extended through imagined simulations of posthuman design. Intuitive human-computer interfaces become interfaces between post- humans; they become new ways of mediating interdependent personal and cultural values—new social and political systems. Systemic experiences become new kinds of emergent post-human perception and awareness. Service economies become the synapses of tomorrow’s underlying system of techno-cultural values, new moral codes.

The first major triumph of interaction design, the design of the intuitive interface, merged technology with aesthetics. Designers adapted modernism’s static typography and industrial styling and learned to address human factors and usability concerns. Today agile software practices and design thinking ensure the intuitive mediation of human and machine learning. We adapt to the design limitations of technological systems, and they adapt in return based on how we behave. This interplay is embodied by the design of the interface itself, between perception and action, affordance and feedback. As the adaptive intelligence of computer systems grows over time, design practices that emphasize the human aspects of interface design will extend beyond the one-sided human perspective of machine usability toward a reciprocal relationship that values intelligent systems as partners. In light of the rapid evolution of these new forms of artificial and synergetic life, the quality and safety of their mental and physical experiences may ultimately deserve equal if not greater consideration than ours.

Interaction design can also define interconnected networks of interface touch-points and shape them into choose-your-own-adventures of human experience. We live in a world of increasingly seamless integration between Wi-Fi networks and thin clients, between phones, homes, watches, and cars. In the near future, crowdsourcing systems coupled with increasingly pervasive connectivity services and wearable computer interfaces will generate massive stockpiles of data that catalog human behavior to feed increasingly intuitive learning machines. Just as human-centered design crafts structure and experience to shape intuition, post-human-centered design will teach intelligent machine systems to design the hierarchies and compositions of human behavior. New systems will flourish as fluent extensions of our digital selves, facilitating seamless mobility throughout systems of virtual identity and the governance of shared thoughts and emotions.

Applying interaction design to post-human experience requires designers to think holistically beyond the interface to the protocols and exchanges that unify human and machine minds. Truly systemic post-human-centered designers recognize that such interfaces will ultimately manifest in the psychological fabric of post-human society at much deeper levels of meaning and value. Just as today’s physical products have slid from ownership to on-demand digital services, our very conception of these services will become the new product. In the short term, advances in wearable and ubiquitous computing technology will render our inner dimensions of motivation and self-perception tangible as explicit and actionable cues. Ultimately such manifestations will be totally absorbed by the invisible hand of post-human cognition and emerge as new forms of social and self-engineering. Design interventions at this level will deeply control the post-human psyche, building on research methodologies of experience economics designed for the strategic realization of social and cognitive value. Can a market demand be designed for goodwill toward humans at this stage, or does the long tail of identity realization preclude it? Will we live in a utopian world of socialized techno-egalitarian fulfillment and love or become a eugenic cult of celebrity self-actualization?

It seems unlikely that humans will stem their fascination with technology or stop applying it to improve themselves and their immediate material condition. Tomorrow’s generation faces an explosion of wireless networks, ubiquitous computing, context-aware systems, intelligent machines, smart cars, robots, and strategic modifications to the human genome. While the precise form these changes will take is unclear, recent history suggests that they are likely to be welcomed at first and progressively advanced. It appears reasonable that human intelligence will become obsolete, economic wealth will reside primarily in the hands of super-intelligent machines, and our ability to survive will lie beyond our direct control. Adapting to cope with these changes, without alienating the new forms of intelligence that emerge, requires transcending the limitations of human-centered design. Instead, a new breed of post-human-centered designer is needed to maximize the potential of post-evolutionary life.

This essay was adapted with permission from Digital Design Theory (Princeton Architectural Press, 2016) edited by Helen Armstrong.

Photo: Jonathan Knowles/Getty Images

Source link